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2sinn =- 
s Ne’ dC (8.2) 

--r 
This, together with the assumption that the functions appearing in the above expressions 
do not undergo large changes, yields 

Ns’ = 0 (sin n) 

But according to our assumption sin R represents the error of the pro-moment conditions, 
hence lvs’ = 0 h”) (8.3) 

The fonrtb equation of equilibrium 
W, a& 
x -~,,?h+Q 

together with (8.3) and (6, I), yields the following estimate : 

QG = 0 (‘1”4) 

which is in full agreement with (6.2). 
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Stability problems of a rectilinear rod and a circular annulus under compression beyond 
the elastic limit are examined on the basis of the prolonged loading concept. 

For an idealized elastoplastic rod model Shanley Cl] showed that the least critical 
value of the axial compressive force is realized under the condition of continuous growth 
of the external loading during buckling. This result was obtained by static methods and 
was later expanded by a number of authors F-51. 

Proceeding from the assumption of equilibrium of the deformation process beyond the 
elastic limit, the stability of a compressed rod is examined taking into account the actual 
position of the boundary separating the elastic and plastic domains during buckling, By 
an asymptotic solution of the nonlinear elastoplastic equilibrium equations the character 
of the branching of the equi~b~um modes in the ne~gh~rh~ of the bif~cation point 
is investigated. 

The bending equations in the post-critical state are obtained by a variational method 
and generalize the Eubr elastic equation to the case of elastoplastic deformation. In 
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conformity with the concept of a prolonged loading, the external force is considered an 
unknown increasing function of the approach of the rod endpoints. It is assumed that this 

function admits expansion into a power series. 
Utilization of the representation of a variable compressive force in the form of a power 

series with undetermined coefficients permits linearization of the initial equations and 
obtaining a parametric equation, in closed form, of the family of curves separating the 

elastic and plastic zones of the rod. 

In conclusion, the stability of elastoplastic equilibrium of a circular annulus subjected 
to increasfng hydrostatic pressure is considered relying on the results obtained in the prob- 

lem of the compressed rod. 

1. let us examine an ideal hinge-supported rectangular rod, compressed quasi-statically 
by an increasing force P,. Beyond the elastic limit the rod material possesses linear hard- 

ening. 
let us consider the applied compressive force not to cause shortening of its axis until 

the beginning of rod twisting at the loading P, = P . 
In calculating the elongation of the fibers a distance z from the middle layer, bylimit- 

ing ourselves to the linear part of the deformation of the middle fiber, we assume 

du d0 
E=ds--Zdr, sin0 = $ (1.1) 

where u = u(s), W Tz 

@I = & + ES(~), C(S),<Z<h 

Fig. 1 
The primes in (1.2) denote differentiation 
with respect to the coordinate S$ while 2b, 2h 

are the cross-sectional dimensions and El, E, are the elastic and tangential moduli of 
the material. 

= w (s) are the bifurcation displacements, and s is the arclength 

of the undeformed rod axis. 
,z Because of the passive deformation accom - 

panying buckling beyond the elastic limit, 

the volume of the rod is separated into elastic 
1 and plastic 2 zones (Fig. 1). The function 
c (a), defines the boundary of the domains of 

active plastic deformation and unloading. 
Denoting quantities referring to each of the 

domains by the superscripts 1 and 2. let us 
write down the compressive strains and stresses 
in the postcritical state 

Z 
&cl)= -f.h+zfY, g(l) = & + &Ecl), 

-11 < 2 <c(s) 7 E@) =‘- U’ + id’, (1.2) 

To obtain the equilibrium equations of an elastoplastic rod under finite bending 
strains, let us proceed from the principle of minimum total energy in the form taken in 
deformation plasticity theory. For a body separated into elastic and plastic zones we 
have [6] 
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63 = 6 (II(L) + l-l’“)) - 6A = 0 

ig-.p’ F s &)&$l~ &J(l) 6l-p) = s (#jecs,(jvs (4.3) 
,cu "(2) 

here n(r), n(s), du(rI, dd2) are the potentials of the work of deformation and the 
volume elements of each of the zones, while A is the work of the external forces. 

Utilizing (1. l)-(1.3) and the equality c (a) = u’ / 8’, which results from the defi- 
nition of the boundary betaeen the elastic and plastic zones (a = 0, z = c), and 
integrating over the cross-sectional area of the rod, we find 

,jj (JJ”) + @‘) = ‘i’ z [( - P + $ d) 6u’ + K6’60’] ds 
-‘/a 1 

(1.4) 

B (s) = b [ill, (h + c)” - E, (h - c)“] 

K (s) = ‘/sb [E, (h + c)” (2h - c) + E, (h - c)” (2h. + c)] 

In conformity with the concept of a continuing loading, let us represent the increasing 

compressive stress resultant PI as a power series with undetermined coefficients 

P, = P + 2 b,A” 
n=1 

(1.5) 

where A h A, f A2, A is the total displacement of the upper supports, and Al, A2 
are components of the approach of the rod endpoints because of compression and bending 

during the bifurcation. Let us utilize the formulas n] 
+‘I2 1 

Al’= _ s U'dS, A, = 21 
[I 

I- +$-I, 
00 

x = sinT (1.6) 

-‘/* 1 
to calculate the displacements A,, A, to the accepted accuracy. Here K (x), E (X) 
are the complete elliptic integrals of the first and second kinds with modulus x,and 8, 
is the reference angle of rotation of the rod section. 

Introducing the variable 7 = ks from the definition of the functions K (x), E (x) 
taking account of (1.1) and the relationships 

dq’= (1 - x2 sin2 (p,)-‘1~ C@J = (1 - x2 sin2 rp)‘/z dt$ / cos2 (0 / 2) 

sincp = sin(8/2)/sin(8,/2) 

we obtain as a result of calculations 

‘I2 x ‘I* 1 

E(x)= S ~1-~2sinacpd~=+- I; (l+JKYP)w’a)s (1.7) 
0 0 

K(x) ='I! l/i_~s!n*q = + 

0 

where cp is the amplitude of the functions K (x), E (x) and k is a parameter. 
According to (1.6), (1.7), (1 .l). the approach of the rod endpoints under finite bending 

displacements is of the form 
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A=A,+A,=l-__$i(~'+~o~e)d~ (1.8) 
t 

Utilizing (1.8) and evaluating the variation in the work of the external forces 6A = 

= P,6A, we find for P, - P -I- (B / c) u’ = Q according to (1.3) (1.4) 
+‘I* 1 

c ( 
Q$&+Ke’& (1.9) 

-r/i 1 

Integrating (1.9) by parts, we obtain 

[$KB’+P,sinBjSe] ds = 0 (1.10) 

The equilibrium conditions of the rod 

dlds 
t 
P, - P + $uf =o, 

) dlds (Ke’) + P, sin 8 = 0 (1.11) 

extending the Euler equation to the case of elastoplastic deformations follow from the 
variational equation (1 .lO) for independent 6u, 68 . 

To determine the critical value of the external loading, let us linearize the system 

(1.11). 
First let us consider the first of the mentioned equations and let us integrate it for the 

initial conditions P, = P, n = w = 0, n’ = 0. Utilizing the expansion (1.5) we 
have as a result of subsequent linearization 

+1/t 1 

PI-- Pf(B/c)u’=O, $u’=b, 
SC 

u’ - $ W’S 
) 

ds (1.12) 
-‘la 1 

where b, is some undetermined coefficient. 
Seeking the approximate solution of the linearized equilibrium equations, and satisfy- 

ing the prescribed boundary conditions, we set 

u(s) = - u. 1 + sin F 
( 

, w(s) = wocos y (1.13) 

From (1.12). (1.13), (1.4) we find 

!?$os.%=b 
c (4 1 1 (1.14) 

Because the displacements of a flexible rod usand woa have the same order of small- 

ness, the ratio w,,’ / u,, is a certain constant, and the right side of (1.14) together with 

the undetermined coefficient 4 can be combined into a common undetermined para- 
meter 

h=br $++w;) 
i 

Introducing the notation 

v = E, I&, a = h ] E,h, co = c / h, so = s / 1 

we represent the first equilibrium equation (1.11) in the dimensionless form 

f Cc09 so, a) = 
ac’ 

(1 + coy _ v (1 _ coy - cos ho = 0 (1.15) 

The transcendental equation (1.15) with parameter a implicitly defines the family 
of curves separating the elastic and plastic zones of the rod at the instant of buckling. 
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The character of the boundary curves co (so, a) calculated by means of (1.15) for 
Y = ‘1% is shown in Fig.2 (solid curves). 

Linearizing the second equilibrium equation in (1.11) by using the expansion (1.5). 
we obtain d 

ds” 
(1.16) 

K" = (1 + c')~ (2 - co) + v (1 - c')~ (2 + co) 
where P, is the tangent- modulus critical loading. 

Setting in conformity with (1.13) 

(1.17) 

Cl = 9,sinxs”, .e, = - Jtw, ] J 

and applying the procedure of the 
Bubnov-Galerkin method to (1.16) we 
find 

Fig. 2 

Fig. 3 

p” = &T(a) (1.18) 

T(a)=+rK"(' s , a) co2 ns” ds” 
--‘I. 

It follows from (1.18) that the rela- 
tive aritical mess resultant P" is a 
function of the undetermined parame- 
ter a associated with the disposition 
of the elastic and plastic zones. 

The minimum value of the critical 
force is realized under the condition 
of the minimum of the integral (1.18) 
in the parameter a. Analysis and eva- 
luation by means of (1.18). (1.16), 
(1.15) show that for a given ratio 
v = E, / E, the function T (a) has 
a relative minimum at the end of the 
interval of variation of the parameter 
a = a, = 4v (Fig. 3). 

For a = CL* the equation co (so, a) 
of the family of lines degenerates into a point with the coordinates so = 0, co = - 1 
(Fig. 2), and (1.16). (1.18) yield 

K”* = 4v, T(a,) = 2v, P" = 1, P = P, 
Therefore, the critical compressive stress resultant of an elastoplastic rod under con- 

ditions of continuing loading found by linearizing the equilibrium equations by using 

the expansion (1.5) corresponds to a tangent-modulus loading. 
“Kkmh” buckling holds for a constant compressive stress resultant at the instant of 

buckling. In this case b, = 0, a = 0, co = (1 - vv> / (1 i- 1/‘v) and the position 
of the boundary between the elastic and plastic zones is independent of the rod coordi- 
nate so (Fig. 2). 
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2, To investigate the post-critical behavior of the rod under compressive stress result- 
ants similar to the tangent-modulus loading, let us turn to the nonlinear equilibrium 
equations (I. 11). 

Assuming that the approximation (1.13) is valid as P, -+ P, when the displacements 
U, w are very small, we have from the first equilibrium equation of (1.11) 

Comparing (2.1) with its corresponding liuearidd equation (1.15), we find that for small 
finite deviations of the rod from the rectilinear shape, 

a = a1 T 
=c”(o)9 r=- 

bxvh”(P,” - 1) , li! o Pi 

300 
r =- 

p* P.2) 

co (0) = 

should he taken as the parameter of the boundary curves for ug = - W (0) 8, and 

h” =hj2. 
The parameter ct,,which is undetermined at the instant of buckliug under loadings 

exceeding P,,conn&s the position of the elastic and plastic zone boundary with the 
axis compression and deviation of the rod. The quantity co (oj is a root of (2.1) for the 
fixed value of the coordinate so = 0. 

Analyzing the post-critical behaviot of the rod in the neighborhood of ?‘r = P, and 
takiug into account that for P, + P, aI -+ iv, co (0) + - 1, y --f - iv, ht us 
introduce the small parameters 

j3 = 4v - Qr, w = 4v + y (2.g 

The relationship (2.2) should be considered as an algebraic equation setting up a 
dependence between the quantities arand y. 

Utilizing (2.2). (2.3) and taking account of the smallness of the quantities 0, p we 
fmd in a quadratic approximation 

(i+ 3qp2-- 2[8va+(b--3v)w]~+(i-v)w*=O, ++,9 

4v (1 Y) 22, 
w 

&I = 
Rho (PI0 - 1) 

- - z=4v= i- 380 (2.4) 

To obtain the asymptotic solution of the nonlinear bending equation in the neighbor- 
hood of the bifurcation point, let us first investigate the behavior of the family of curves 
(2.1) with the parameter aras P, + P,, Taking into account that in this case the 
unloading domain is vanishingly small (Pt.-+ P,, so + 0, t” = 1 + co -+ 0) and 
the approximate formulas 

are valid to the accuracy of second order members in the quantities to, 8, p we obtain 
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here sr” is the boundary between the elastic and plastic zones on the side surfaces of the 
rod (t” = 0). 

It follows from (2.5) that for compressive forces similar to the tangent-modulus load- 
ing the elastic core of the rod is an elliptic domain with semi-axes dependent on axial 

compression and the amplitudes of the angles of rotation of the cross sections. 

According to(1.16),(2. 5),(2.4), for 

co = to - 1, g, = 4v + 3 (1 - v) T*, g2 = - 67~~~ 

the dependence of the rod bending stiffness varying along the length, has the following 
form in a quadratic approximation: 

(2.6) 

Turning to an investigation of the asymptotic solution of the nonlinear bending equa- 

tion with a stiffness given by (2.6) let us represent (1.11) in the dimensionless form 

-& p” $) + 4n2vP,” sin 8 = 0 (2.7) 

Considering small rod deviations from the rectilinear shape, let us seek the approximate 

solution of (2.7) by setting 0 = 13,,sinns” in conformity with (1.17). Applying the 
Bubnov-Galerkin method to the nonlinear equation (2.7) associated with the variational 
problem (1.3), we have 

%Lr - 4lcv (8,L, - P,“L,) = 0, ‘I* dC1 
L1 = j dsO sin ars”dso 

L, = 2 sin ~s”dso, L, = f G3 sin &=‘d.s’ 

Gl = (gl + g2s02) cosns”, G, = sinrts’, G, = sin (8,sinns”) 

Performing the quadratures 

L, = -_(g,+~}+f[g,+g,~~+s,“)lsin2ns,“- ~COS~XS,” 

L, = Ijq - ‘/2slo + 1/qx%in2m10, L, = 1/2I1 (0,) 

and taking account of the smallness of the quantities si”, we arrive at a transcendental 
equation connecting the angle of rotation with the axial compression of the rod 

1 + 5n’s,“s + 2P, I, (e,) / 0, = 0 

where 1, (0,) is the Bessel function of the first kind. 
Utilizing the approximation I, (e,) =v ~i/&I, for 8, < 1 and the relationships(2.4), 

(2. 5). we find 
0, = l/S JCh” (Pl' - 1) 

i---m(P~"--l~" ' 

Determining the slope of the-curve 8, = 6, (Pi”) at the point P, = P, and going 

over to the amplitude of the rod deflections in conformity with (1.17). we obtain for zoo = 
=- U’o / h 

WQ zzz i/3 (Pl” - 1) duo 

(-_) 

1 

1 - m (Pl” - I)“, ’ dP1° * = 3 (2.8) 
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It follows from (2.8) that the point with coordinates Pt” = 1, W” = 0 is a branch 
point of the equilibrium mode of a compressed elastoplastic rod (Fig. 4). The slope of 

Fig. 4 

thd tangent to the curve w”=& @,‘) atP,O:- 1 

agrees with the results in p, 51. 

8. Utilizing the results of Sect. 1. and keeping 
the same notation, unless specified otherwise, let 

us examine a kindred problem of the stability of 

the elastoplastic equilibrium of a circular ring of 
rectangular cross section subjected to increasing 

hydrostatic pressure. 

The solution of the mentioned problem results 

in a system of nonlinear bending differential equa- 

- $ (S0’2) + qRB”= 0 (3.1) 

resulting from the equilibrium conditions of a 
deformed ring element 

N dQ 
7 - Ne’ - ds 

-=- Ql> Q=% 
Here E, 8 are the finite deformation components 

E = e +x/s (62 + r2) + 2x, x = - B’, sine =r 

cos 8 =l+e, ~=W’-v/R, e=v’+-w/R 

where u, w are the ring displacement in the tangential and outer normal directions, R 

is the radius, q, ql the linear hydrostatic loading at the instant of bifurcation and in the 

post-critical state. and N, Q, M are the axial stress resultant, the transverse force, and the 

bending moment, respectively. Relationships between the stress resultants and strains 
found by integrating the stresses (1.2) over the cross-sectional area for P = - qR, e(l) = 
= E@) = e + ‘12 (~9 + y*) - 2 8’ are 

N 
B (s) = - q.9 + 7 E, lt’f = - K (S) 8’ (-=[4nRgS<+1/4nR) 

Here and henceforth, we shall consider buckling of the ring with the formation of two 
half-waves, Such an alternation of the elastic and plastic zones in the circumferential 

direction, for which the arc -V,nR < 8 < $- 1/4nR might be considered instead of the 

closed ring because of symmetry, will correspond to this case. 
Linearizing the bending equation (3.1) and discarding the member with the factor 

(h / R)2 in the first of the equations for a thin circular ring, we find 

(3.2) 

Integrating the first equation of the system (3.2). we have 
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F(C”)(d + ~).=cl~coIlst, F (.c”) = $ [(I + CO)2 - Y (1 - coy] (3.3) 

Proceeding form the concept of a continuing loading, we seek the solution of the dif- 

ferential equation (3.3) as 

v=v,sin-$+u,(s), w = wocos $- + w* (s) (3.4) 

taking account of the bending and multilateral compression displacement during bifur- 
cation. Here u*, w* are the additional displacements of the elastoplastic ring under 

uniform external pressure as a curved variable-stiffness rod. 

Utilizing (3.3), (3.4) and setting (n,’ + w* / R) = e, (s) = - e. / F (c”) 
within the limits of the considered quarter ring, 

we obtain 

F (CO) (2v, + wo) Co+ = (Cl + eo) R 

Evaluating the constant of integration C, from 
the conditions vO = w. = 0 and eo= 0 which 
are valid at the instant preceding bifurcation, and 

introducing the undetermined parameter a = 
3 e,R / (2~~ + w,,), we arrive at the expression 

F(8) coss”=a, s”=2s]R, 

--“2<ss”<+n/2 (3.5) 

The transcendental equation (3.5) determines 
--1fl ff C” the position of the boundary between the elastic 

Fig. 5 
and plastic zones to the accuracy of the parame- 

ter.a and agrees with the corresponding equation 

for a compressed rod. Presented in Fig, 5 is the character of the curves co (so, a) con- 
structed by means of this equation. 

To find the critical value of the multilateral external pressure, let us use the Bubnov- 

Galerkin method. Seeking the solution of the second equation of the system (3.2) in the 
form y = y. sins’ , and performing the quadratures, we find 

q” = & T (cc) (3.6) 

where T (a) is a function of the parameter a defined by (1.18). 
Utilizing the results of solving the problem on rod stability, we conclude that the 

minimal critical pressure of a circular ring is realized for a = a, = 4v, K” = 

= K,O = 2v, T (a*) = 2~ and corresponds to the tangent-modulus loading 

4” = 1, q = qe, h = (3E2 ] cJ/*, h = R / i 
here o* is the critical compressive stress, h. the flexural stiffness, i the radius of inertia 
of a ring section. 

To obtain the solution of the problem of “K&mdn” buckling of an elastoplastic ring, 

the circumferential compressive strain should be put equal to zero. For e” = 0 and 
a = 0, the width of the plastic zones within the limits of each quarter ring turns out 

to be constant (Fig. 5) and the procedure of calculation by using (3.5), (3.6) results in 
a critical external pressure corresponding to a reduced-modulus loading. 
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The problem of investigating the magnetoelastic vibrations of an electrically conduct- 
ing plate in a magnetic field reduces to the combined solution of the magnetoelasticity 

equations in the domain occupied by the plate (interior problem), and the electrodynamics 
equations of the rest of the domain of the space under consideration (exterior problem). 

An attempt is made to determine the magnetic field of a thin plate of finite conduc- 
tivity by the asymptotic integration of the combined equations of magnetoelasticity for 
the domain occupied by the plate. Jointly considering the exterior and interior problems, 

the magnetoelastic vibrations of a thin plate of finite conductivity are investigated. 
Some magnetoelasticity hypotheses are formulated for a plate of finite conductivity. 

In particular cases when the plate material is ideally conductive or a thin plate of 
infinite extent has finite electrical conductivity, the problem of the magnetoelastic vib- 

rations is solved relatively simply [l. 21. 
In the general case when the plate can have finite dimensions, and its material is 

finitely conductive, the solution of the problem posed becomes quite difficult, because 
the interior problem in this case does not separate, and the exact determination of the 
magnetic field of the plate in a three-dimensional formulation is not possible. 

1. An isotropic elastic plate of constant thickness % fabricated from a material 
with finite electrical conductivity and in an external magnetic field with given inten- 

sity vector Ho (H,, if,, .ff3). is considered. 
It is assumed that the magnetic and dielectric permeability of the plate equal one. 
The Maxwell equations for-a vacuum [37 are considered valid for the exterior domain 

(for. the whole domain outside the plate). 


